A Dynamic-Weighted Attenuation Memory Extended Kalman Filter Algorithm and Its Application in the Underwater Positioning
نویسندگان
چکیده
Extended Kalman filter (EKF) plays an important role in the acoustic signal processing of underwater positioning. However, accumulative errors and model inaccuracies lead to divergence. Then, attenuation memory EKF is created response this issue which needs manually select all or part parameters. Thus, a dynamic-weighted proposed. Firstly, several positioning simulations under different conditions are carried out. Results show, with change parameter positioning, ideal coefficient changes between 0.5 1, but it difficult express function formula statistical form. Secondly, dynamic selection method factor designed. In later contrast simulation, proposed has improved performance compared existing algorithm. Finally, results physical verification experiment show that algorithm not only suppresses divergence better also avoids subjectivity certain extent.
منابع مشابه
Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملidentification of an autonomous underwater vehicle dynamic using extended kalman filter with arma noise model
in the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. in this study, hydrodynamic coefficients of an autonomous un...
متن کاملThe Particle Filter and Extended Kalman Filter methods for the structural system identification considering various uncertainties
Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel struct...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملDesign of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter
This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2021/3625362